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Abstract Understanding of the microbial community

structures of the biogas digesters in different climatic

regions can help improve the methane production in the

fermentation process. The methanogenic archaeal diversity

in four rural biogas digesters (BNA, JSA, LJA, and XGA)

was investigated by a culture-independent rRNA approach

in different climatic regions in Yunnan. Community

structure composed of 711 clones in the all libraries. A

total of 33 operational taxonomic units (OTUs) were

detected, and major groups of methanogens were the orders

Methanosarcinales and Methanomicrobiales. 63.2 % of all

archaeal OTUs belong to the order Methanosarcinales

which mostly contain acetotrophic methanogens. Methan-

omicrobiales (19.5 % in all OTUs) were detected in con-

siderable number. Additionally, there were minor rates of

uncultured archaea. The principal component analysis

indicated that the genus Methanosaeta was mainly affected

by the fermentation temperatures.

Introduction

Biomass can biologically be converted to biogas using

anaerobic digestion process and potentially reduce carbon

dioxide emission [9]. Currently, it has become a global

research hotspot that organic wastes are transformed to

biogas, a kind of renewable energy [3, 32, 41]. Biogas was

not only an important part of the development of renewable

energy, but also an important aspect of sustainable devel-

opment [14]. Simultaneously, the application of anaerobic

digestion can treat various organic wastes in a rural area [29].

Moreover, due to the complex microbiological charac-

teristics of the biogas fermentation process, various reactor

designs, operating conditions, and fermentation substrates

will result in changes within the microbial populations

present in the system. Therefore, understanding the ecol-

ogy and function of the microbial community in these

processes was critical and can ultimately improve the

conversion efficiency [26, 35]. So far, these characteristics

of microbial community using culture-independent

molecular techniques have been known in full-scale biogas

digesters and plants [34, 39, 40]. To our knowledge, the

community of methanogenic archaea has not yet been

directly revealed in the household biogas digesters in dif-

ferent climatic regions in Yunnan.

Based on rRNA approach [2], an investigation of the

diversity of methanogenic archaea of four rural biogas

digesters was conducted in this study. To relate the com-

munity structures and process parameters such as total

solids (TS), volatile solid (VS), total phosphorus (TP),

chemical oxygen demand (COD), ammonia nitrogen (NH3-

N), and fermentation temperatures, principal component

analysis (PCA) was used. These rural biogas digesters were

usually fed with the local single or mixed substrates in the

different climatic regions of Yunnan. The construction of
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16S ribosomal RNA gene clone libraries was carried out to

determine the community structures of methanogenic

archaea.

Materials and Methods

Rural Biogas Digesters and Samples

Total of 26 rural biogas digesters were sampled in different

climate regions of Yunnan in July, 2012. For the molecular

analysis of archaeal diversity, four of them (BNA, JSA,

LJA, and XGA stand for the digesters in the tropical cli-

mate region, subtropical climate region, south temperate

climate region, and north temperate climate region of

Yunnan, respectively) were typically selected to research.

These 6 m3 digesters were operated at natural temperatures

in wet fermentation conditions for several years. The

activated sludge was collected in 50 ml sterile centrifuge

tubes and preserved at -80 �C until DNA extraction in the

laboratory. The fermentation temperatures of the digesters

were directly measured. The process parameters have been

obtained from these digesters in laboratory and given in

Table 1.

DNA Extraction, PCR, and Library Construction

Total DNA was extracted from the samples using the

PowerSoil DNA isolation kit (MO BIO-Laboratories,

USA). PCR amplification of archaeal 16S rRNA genes was

carried out using the primers ARC-8F/958R [12]. PCR

reactions contained 50–100 ng DNA template, 19 GoTaq

Green Master Mix (Promega), 1 mM MgCl2, and 2 pmol

of each primer. Amplification consisted of an initial 95 �C

for 5 min followed by 30 cycles of 95 �C for 30 s, 55 �C

for 30 s, and 72 �C for 45 s, and a final extension of 72 �C

for 10 min. All PCR products were purified using the

QIAquick spin kit (Qiagen). PCR products were visualized

on agarose gels using standard electrophoresis procedures.

The purified DNA products were ligated into pMD19T

vectors using a rapid ligation kit according to the instructions

of the manufacturer (TaKaRa), and then transformed into

competent Escherichia coli DH5a cells. For the gene clones,

the vector-specific primers M13f/M13r were used to avoid

co-amplification of E. coli host-cell DNA. Amplicons were

sequenced with ABI 3730 (Shanghai Sangon Biotechnology

Co., Ltd., Shanghai, China).

Phylogenetic and Statistical Analyses

Clone sequences were checked for chimeras using Chimera

Check [23]. The sequences were compared pairwise using

a Blast search and alignment with the sequences of related

species retrieved from the GenBank using the multiple

alignment program Clustal_X version 2.0 [1, 21]. Phylo-

genetic trees were constructed by the neighbor-joining

method with the MEGA5 [28, 36]. Evolutionary distances

were calculated according to the algorithm of the Kimura’s

two-parameter model [20]. Bootstrap analysis was used to

evaluate the tree topology by means of 1,000 resamplings

[16]. DOTUR was used to assign sequences to an OTU

with a minimum sequence similarity of 97 % [30].

Analytic Rarefaction 1.3 was used for rarefaction ana-

lysis. Shannon diversity was calculated using the Bio-Dap

software [31, 37]. A PCA of the data from the clone

libraries was performed at the genus level using software

Canoco 4.5 [6]. The 33 partial 16S rRNA gene sequences

obtained in this study have been deposited in the GenBank

under accession number KJ806520-KJ806552.

Results and Discussion

Species Richness and Diversity

711 clones retrieved from four digesters were retrieved, and

33 archaeal OTUs was obtained (Table 2). The rarefaction

analyses showed that the single clone library size was suf-

ficient (Fig. 1). Good’s coverage ranged from 97 to 99 %,

also suggesting that cloning captured the dominant geno-

types and also supported the tendency of the asymptotes of

rarefaction curves. Conspicuously, Shannon diversity of the

Table 1 Altitude and operating process parameters of the four rural biogas digesters

Digester Substrate Temperature (�C) pH TS (%) VS (%) TP (mg/L) NH3-N (mg/L) COD (mg/L) Altitude (m)

BNAa Pig and chicken manure 28 7.4 11.2 75.1 190.2 231.9 349.5 838.9

JSAa Pig manure 25 7.9 8.3 74.1 261.3 281.9 1183.0 1295.9

LJAa Pig and horse manure 18 7.3 3.3 68.4 320.6 167.9 667.8 2450.6

XGAa Cattle manure 10 7.6 10.5 53.9 433.3 249.9 1297.4 3219.5

a BNA (228510N, 101860E), JSA (238700N, 1028890E), LJA (268850N, 1008140E), and XGA (278830N, 998730E) stand for the digesters in the

tropical climate region, subtropical climate region, south temperate climate region, and north temperate climate region of Yunnan, respectively
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clone libraries ranged from 1.2 to 2.2 (Table 2). The high

Shannon index suggests that archaeal taxa in these habitats

were significantly abundant. The results are similar to results

of other researchers [4, 10].

Phylogenetic Analysis

BLAST search results showed that all the clones

were assigned 33 OTUs to three phylogenetic groups:

Methanosarcinales, Methanomicrobiales, and uncultured

archaea, respectively (Table 3). Phylogenetic tree was con-

structed to determine the relationships of all OTUs (Fig. 2).

About 63.2 % of the clones grouped into the order Meth-

anosarcinales having 4 OTUs, which was represented by

these genera Methanosaeta, Methanosarcina, and Metha-

nolobus, and showed a 97–99 % similarity with them. 2

OTUs belonged to the genus Methanosaeta were the most

frequently detected clones in all digesters with 48.0 %. The

order Methanomicrobiales was represented by 4 families: 4

OTUs of Methanomicrobiaceae (9.4 %), 2 OTUs of Met-

hanocorpusculaceae (5.3 %), 4 OTUs of Methanospirilla-

ceae (4.0 %), and 1 OTU of Methanoregula (1.4 %).

Methanosaeta was dominant group in three digesters except

XGA. The major group was Methanosarcina in the XGA

digester. It only contained an extremely small population of

Methanomicrobiales (1.2 and 4.7 %) in the BNA and JSA

digesters. It is obviously different consequences that the

population of Methanomicrobiales was up to 39.8 and

29.4 % in LJA and XGA digesters. Here also contained a

minor number of uncultured archaea (17.3 % in all clones).

The order Methanosarcinales was acetotrophic methano-

gens for majorly utilizing acetate as substrate for energy

metabolism [5]. There is a general assumption that 70 % of

methane was produced by acetotrophic methanogens [24].

Table 2 Diversity indices of four 16S rRNA gene clone libraries of the rural biogas digesters in different climatic regions of Yunnan

Clone library Number of clones Number of OTUs Shannon (H0) Evenness (E) Chao Ia Coverage (%)

BNA 169 17 1.24 0.46 18 (17, 23) 97

JSA 162 18 1.63 0.56 22 (19, 44) 97

LJA 176 23 2.18 0.70 32 (22, 14) 97

XGA 204 12 1.76 0.72 13 (12, 19) 99

a Values in parentheses are given for 95 % confidence interval

Fig. 1 Rarefaction analyses of four archaeal 16S rRNA gene clone

libraries of the rural/household biogas digesters in different climate

regions in Yunnan

Table 3 Results of four 16S

rRNA gene clone libraries

analyses of the rural biogas

digesters in different climate

regions of Yunnan

ND not detected

BNA (%) JSA (%) LJA (%) XGA (%) Total (%)

Methanosarcinales 78.7 67.3 46.6 61.3 63.2

Methanosaeta 76.3 66.7 43.2 13.7 48.0

Methanolobus 1.2 0.6 0.6 ND 0.6

Methanosarcina 1.2 ND 2.8 47.5 14.6

Methanomicrobiales 1.2 4.3 39.8 29.4 19.5

Methanospirillum 1.2 4.3 7.4 ND 3.1

Methanogenium ND ND 11.4 6.4 4.6

Methanoplanus ND ND 8.5 6.4 3.9

Methanoregula ND ND 2.3 2.9 1.4

Methanocorpusculum ND ND 6.8 12.7 5.3

Methanoculleus ND ND 3.4 ND 0.8

Methanosphaerula ND ND ND 1.0 0.3

Uncultured archaea 20.1 28.4 13.6 9.3 17.3
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The composition of the order Methanosarcinales ranged from

46.6 to 78.7 % among the digesters; therefore, the main

methane metabolic pathway is acetate pathway in them. The

genus Methanosaeta was found to be the dominant aceto-

trophic methanogens in a variety of anaerobic reactors at low

acetate concentrations during quantification of Methanosaeta

in anaerobic bioreactors [42]. The proportion of the genus

Methanosaeta (13.7–76.3 %) in different digesters should be

affected by comprehensive ecological environmental factors

[19, 43]. In addition to hydrolysis of polymeric substances, the

activity and performance of the methanogenic archaea was of

paramount importance during methanogensis [13].

The presence of a considerable proportion of hydrogeno-

trophic methanogens in the LJA and XGA digesters suggested

a high production of hydrogen by syntrophic bacteria during

the organic matter degradation, because the acetate-oxidizing

bacteria have a competitive relationship with the acetotrophic

methanogens for converting acetate to H2 ? CO2 [24]. At

temperature as low as 15 �C, syntrophic acetate oxidation has

been reported for natural anoxic environments in subtropical

lake sediments [27]. Furthermore, the syntrophic relationship

between hydrogenotrophic methanogens and acetate-oxidiz-

ing organisms could be the main route of acetate degradation

in biogas fermentation [38].

OTU1
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Methanolobus profundi (NR_041665)
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Fig. 2 Phylogenetic tree of 16S

rRNA gene sequences

constructed with evolutionary

distances calculated based on

the Kimura-2 model and the

neighbor-joining method. The

topology of the tree was

estimated by bootstraps based

on 1000 replication
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Effect of Environmental Factors on Community

Structure

The PCA biplot gave three major clusters for archaeal

community at the genus level (Fig. 3). The first cluster was

dominated by sequences belonging to the acetotrophic

methanogens Methanosaeta and Methanolobus closing

with the major fermentation temperatures (Tem) and VS.

The second and third clusters were Methanosarcina and the

major hydrogenotrophic methanogens relevance with the

TP, respectively.

The results implied that the fermentation temperatures

and high VS were to determine the scale of Methanosaeta

according to the PCA results. The proportion of Methan-

osaeta sharply declined with the fermentation temperatures

of the digesters dropped from 28 to 10 �C. Some study also

implied that Methanosaeta was observed to be the most

abundant in mesophilic anaerobic digesters [17]. More

importantly, temperature change will alter methanogenic

community structure and diversity in the ecosystems,

which make the succession of the dominant groups of

methanogenic archaea [18]. We newly know that Meth-

anosaeta is strongly influenced by fermentation tempera-

tures in the digesters of this study, which explain a large

proportion of the variance in methanogenic archaeal

community at different climatic regions. Furthermore,

Methanosarcina was found usually in digesters fed with

cattle manure and often more tolerant than other metha-

nogens against harsh conditions [7, 11, 15]. Methanosar-

cina consumed acetate at high acetate concentration, and

usually indicated that the digester was unstable perfor-

mance [25]. The archaeal community involved in the bio-

gas fermentation process can be affected by change of

environmental factors and made a reduction of the reactor

efficiency and lead to process errors like acidification or

decrease of gas production rate [8, 22]. The optimum

habitat of Methanospirillum was the mesophilic condition

[33]. That is the reason that Methanospirillum only absent

in the XGA digester which of the fermentation tempera-

tures was only 10 �C and even frozen in the winter.

Conclusion

In conclusion, the community structures of methanogenic

archaea in the rural digesters study demonstrated a high

level of archaeal diversity. The archaea were identified and

included three phylogenetic groups: Methanosarcinales

(63.2 %), Methanomicrobiales (19.5 %), and uncultured

archaea (17.3 %). The PCA indicated that the dominant

taxon Methanosaeta was mainly affected by the fermen-

tation temperatures. The community structures of metha-

nogenic archaea in this study will be helpful to recognize

the effect of the environmental factors during the methane

production in biogas digesters. Therefore, further investi-

gation is required to define the interactions of methanogens

and syntrophic bacteria during methanogensis and to

improve the efficiency of biogas digesters in rural house-

hold digesters.
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43. Zielińska M, Cydzik-Kwiatkowska A, Zieliński M, Dębowski M
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